Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(42): 49865-49873, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877416

RESUMO

In this study, we present a thermoresponsive thin hydrogel layer based on poly(N-isopropylacrylamide), functionalized with ß-cyclodextrin groups (p(NIPA-ßCD)), as a novel electrochemically controlled release system. This thin hydrogel layer was synthesized and simultaneously attached to the surface of a Au quartz crystal microbalance (QCM) electrode using electrochemically induced free radical polymerization. The process was induced and monitored using cyclic voltammetry and a quartz crystal microbalance with dissipation monitoring (QCM-D), respectively. The properties of the thin layer were investigated by using QCM-D and scanning electron microscopy (SEM). The incorporation of ß-cyclodextrin moieties within the polymer network allowed rhodamine B dye modified with ferrocene (RdFc), serving as a model metallodrug, to accumulate in the p(NIPA-ßCD) layer through host-guest inclusion complex formation. The redox properties of the electroactive p(NIPA-ßCD/RdFc) layer and the dissociation of the host-guest complex triggered by changes in the oxidation state of the ferrocene groups were investigated. It was found that oxidation of the ferrocene moieties led to the release of RdFc. It was crucial to achieve precise control over the release of RdFc by applying the appropriate electrochemical signal, specifically, by applying the appropriate potential to the electrode. Importantly, the electrochemically controlled RdFc release process was performed at a temperature similar to that of the human body and monitored using a spectrofluorimetric technique. The presented system appears to be particularly suitable for transdermal delivery and delivery from intrabody implants.

2.
Gels ; 9(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37367118

RESUMO

Thermoresponsive gels based on N-isopropylacrylamide functionalized with amino groups were modified with gallic acid, with gallate (3,4,5-trihydroxybenzoic) groups being introduced into the polymer network. We investigated how the properties of these gels were affected at varying pH, by the formation of complexes between the polymer network of the gels and Fe3+ ions (which form stable complexes with gallic acid, exhibiting 1:1, 1:2, or 1:3 stoichiometry, depending on pH). The formation of complexes with varying stoichiometry within the gel was confirmed using UV-Vis spectroscopy, and the influence of such complexes on swelling behavior and volume phase transition temperature were investigated. In the appropriate temperature range, complex stoichiometry was found to strongly affect the swelling state. Changes in the pore structure and mechanical properties of the gel caused by the formation of complexes with varying stoichiometry were investigated using scanning electron microscopy and rheological measurements, respectively. The volume changes exhibited by p(NIPA-5%APMA)-Gal-Fe gel were found to be greatest at close to human body temperature (~38 °C). Modification of thermoresponsive pNIPA gel with gallic acid opens new opportunities for the development of pH- and thermosensitive gel materials.

3.
ACS Appl Mater Interfaces ; 15(20): 24798-24811, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37137820

RESUMO

We describe a new, safe, and effective method for removing wax resin adhesive from the canvases of paintings conserved by the once widely used Dutch Method, which involved attaching a new canvas to the back of a painting using an adhesive made of beeswax and natural resin. First, a low-toxicity cleaning mixture for dissolving the adhesive and removing it from the canvases was developed, and then a nanocomposited organogel was obtained. The ability of the organogel to remove the adhesive from canvases was investigated on the lining of the 1878 painting "Battle of Grunwald" by Jan Matejko, with promising results. Additionally, we found that the organogel can be used several times with no visible loss of cleaning ability. Finally, the effectiveness and safety of the method were confirmed on two oil paintings (one from the National Museum in Warsaw): all the wax resin adhesive was removed and the painting regained its original brightness and vivid colors.

4.
Langmuir ; 39(6): 2398-2407, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724204

RESUMO

A series of thermoresponsive hydrogels containing positively charged groups in the polymeric network were synthesized and modified with the electroactive compound 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). ABTS, which forms a dianion in aqueous solutions, acts as an additional physical cross-linker and strongly affects the swelling ratio of the gels. The influence of the amount of positively charged groups and ABTS oxidation state on the volume phase transition temperature was investigated. A hydrogel that possesses a relatively wide and well-defined temperature window (the temperature range where changes in the ABTS oxidation state affects the swelling ratio significantly) was found. The influence of the presence and oxidation state of ABTS on mechanical properties was investigated using a tensile machine and a rheometer. Then, a very thin layer of the gel was deposited on an Au electrochemical quartz crystal microbalance with dissipation (EQCM-D) electrode using the electrochemically induced free radical polymerization method. Next, chronoamperometry combined with quartz crystal microbalance measurements, obtained with an Au EQCM-D electrode modified by the gel, showed that the size of the thin layer could be controlled by an electrochemical trigger. Furthermore, it was found that the electrosensitivity could be modulated by the temperature. Such properties are desired from the point of view construction of electrochemical actuators.

5.
Drug Deliv ; 29(1): 2561-2578, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35938558

RESUMO

Enzyme-responsive polymeric-based nanostructures are potential candidates for serving as key materials in targeted drug delivery carriers. However, the major risk in their prolonged application is fast disassembling of the short-lived polymeric-based structures. Another disadvantage is the limited accessibility of the enzyme to the moieties that are located inside the network. Here, we report on a modified environmentally responsive and enzymatically cleavable nanogel carrier that contains a hybrid network. A properly adjusted volume phase transition (VPT) temperature allowed independent shrinking of a) poly(ethylene glycol) methyl ether methacrylate (OEGMA) with di(ethylene glycol) and b) methyl ether methacrylate (MEO2MA) part of the network, and the exposition of hyaluronic acid methacrylate (MeHa) network based carboxylic groups for its targeted action with the cellular based receptors. This effect was substantial after raising temperature in typical hyperthermia-based treatment therapies. Additionally, novel tunable NGs gained an opportunity to store- and to efficient-enzyme-triggered release relatively low but highly therapeutic doses of doxorubicin (DOX) and mitoxantrone (MTX). The controlled enzymatic degradation of NGs could be enhanced by introducing more hyaluronidase enzyme (HAdase), that is usually overexpressed in cancer environments. MTT assay results revealed effective cytotoxic activity of the NGs against the human MCF-7 breast cancer cells, the A278 ovarian cancer cells and also cytocompatibility against the MCF-10A and HOF healthy cells. The obtained tunable, hybrid network NGs might be used as a useful platform for programmed delivery of other pharmaceuticals and diagnostics in therapeutic applications.


Assuntos
Ácido Hialurônico , Éteres Metílicos , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Humanos , Ácido Hialurônico/química , Metacrilatos/química , Nanogéis , Polietilenoglicóis/química , Polímeros
6.
J Mater Chem B ; 10(23): 4463-4472, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608087

RESUMO

We successfully synthesized a novel hydrogel based on derivatives of natural α-amino acids: ornithine and cystine. To make ornithine attachable to the polymer chain, the δ-amino group was modified with an acryloyl group and the main monomer was obtained. From cystine, the cross-linker N,N'-bisacryloylcystine was obtained. Then, by free radical polymerization of the monomers in the presence of Fe3+, the hydrogel was obtained. The presence of iron ions in the pre-gel solution accelerated the decomposition of a free radical initiator (ammonium persulfate) and allowed uniform distribution of complexed Fe3+ in the hydrogel to be obtained. The presence of free α-amino acid groups in the main monomer and then in the polymeric network of the gels enables this complexation. As a result, the obtained hydrogel benefits from the chemical and physical cross-links, disulfide bonds, and metal-ligand complex, respectively. The composition of the hydrogel was optimized to obtain improved mechanical properties and self-healing ability. Thereby we identified a hydrogel exhibiting fast and conclusive self-healing, which recovered approximately 99% (efficiency of self-healing based on fracture strain) of its original properties after 15 min. The conductivity and electrical response of the hydrogel were investigated. The results revealed a rapid electrical response to minor stretching of the hydrogel, allowing it to be used as a strain sensor. In addition, the presence of the disulfide bonds in the hydrogel structure enabled the hydrogel to degrade in a redox environment.


Assuntos
Cistina , Hidrogéis , Aminoácidos , Hidrogéis/química , Ornitina , Polimerização , Polímeros/química
7.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948192

RESUMO

In contrast to monotopic receptor 3, the anthracene functionalized squaramide dual-host receptor 1 is capable of selectively extracting sulfate salts, as was evidenced unambiguously by DOSY, mass spectrometry, fluorescent and ion chromatography measurements. The receptors were investigated in terms of anion and ion pair binding using the UV-vis and 1H NMR titrations method in acetonitrile. The reference anion receptor 3, lacking a crown ether unit, was found to lose the enhancement in anion binding induced by the presence of cations. Besides the ability to bind anions in an enhanced manner exhibited by ion pair receptors 2 and 4, changing the 1-aminoanthracene substituent resulted in their exhibiting a lower anion affinity than receptor 1. By using receptor 1 and adjusting the water content in organic phase it was possible to selectively detect sulfates both by "turn-off" and "turn-on" fluorescence, and to do so homogenously and under interfacial conditions. Such properties of receptor 1 have allowed the development of a new type of sensor capable of recognizing and extracting potassium sulfate from the aqueous medium across a phase boundary, resulting in an appropriate fluorescent response in the organic solution.


Assuntos
Ânions/química , Antracenos/química , Acetonitrilas/química , Cátions/química , Éteres de Coroa/química , Cristalografia por Raios X/métodos , Fluorescência , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Quinina/análogos & derivados , Quinina/química , Sulfatos/química
8.
Pharmaceutics ; 13(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064408

RESUMO

Due to the unwanted toxic properties of some drugs, new efficient methods of protection of the organisms against that toxicity are required. New materials are synthesized to effectively disseminate the active substance without affecting the healthy cells. Thus far, a number of polymers have been applied to build novel drug delivery systems. One of interesting polymers for this purpose is povidone, pVP. Contrary to other polymeric materials, the synthesis of povidone nanoparticles can take place under various condition, due to good solubility of this polymer in several organic and inorganic solvents. Moreover, povidone is known as nontoxic, non-carcinogenic, and temperature-insensitive substance. Its flexible design and the presence of various functional groups allow connection with the hydrophobic and hydrophilic drugs. It is worth noting, that pVP is regarded as an ecofriendly substance. Despite wide application of pVP in medicine, it was not often selected for the production of drug carriers. This review article is focused on recent reports on the role povidone can play in micro- and nano drug delivery systems. Advantages and possible threats resulting from the use of povidone are indicated. Moreover, popular biomedical aspects are discussed.

9.
Inorg Chem ; 59(18): 13749-13759, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32885659

RESUMO

The use of a squaramide-based ion pair receptor offers a solution to the very challenging problem of extraction and transport of extremely hydrated sulfate salt. Herein we demonstrate for the first time that a neutral receptor is able not only to selectively extract but also to transport sulfates in the form of an alkali metal salt across membranes and to do so in a cooperative manner while overcoming the Hofmeister bias. This was made possible by an enhancement in anion binding promoted by cation assistance and by diversifying the stoichiometry of receptor complexes with sulfates and other ions. The existence of a peculiar 4:1 complex of receptor 2 with sulfates in solution was confirmed by UV-vis and 1H NMR titration experiments, DOSY and DLS measurements, and supported by solid-state X-ray measurements. By varying the separation technique and experimental conditions, it was possible to switch the depletion of the aqueous layer into extremely hydrophilic or less lipophilic salts, thus obtaining the desired selectivity.

10.
Int J Pharm ; 579: 119188, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113815

RESUMO

A new nanogel/drug carrier of 100-150 nm size, based on poly(N-isopropylacrylamide-co-sodium acrylate) and degradable crosslinker (cystine derivative), was synthesized. Using the electrostatic interactions between the carboxylic groups in the polymer network and the protonated amine groups of doxorubicin it was possible to load the drug into the carrier to a very high level of 28-30% relative to the dry mass of the polymer. The presence of the -S-S- groups made the polymer network susceptible to degradation by glutathione. The size of the nanoparticles was small enough to enable them to easily penetrate the cells. The MTT assay indicated that compared to free doxorubicin the nanogel particles loaded with doxorubicin were more cytotoxic against the MCF-7 and A2780 cancer cells, while they were 150 times less toxic against the MCF-10A healthy cells. The new carrier nanoparticles appeared also to be useful for prolonged drug delivery.


Assuntos
Acrilamidas/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Nanopartículas/química , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Células do Cúmulo , Preparações de Ação Retardada , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Hidrogéis/efeitos adversos , Tamanho da Partícula
11.
R Soc Open Sci ; 6(11): 190981, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31827839

RESUMO

For the first time, by using precipitation polymerization in an aqueous solution, a cross-linked poly(acrylic acid)-(pAA) nanogel was synthesized. pAA was synthesized and cross-linked with N,N'-methylenebisacrylamide (BIS) at 70°C in an acidified environment (pH 2) and containing 0.7 M NaCl using potassium persulfate as the initiator. Ionized pAA was soluble in water. The use of sodium chloride at low pH caused a decrease in the solubility of pAA and led to its precipitation and formation of cross-linked pAA nanogel. By using electron microscopies and light scattering techniques, the morphology, pH sensitivity and zeta potential of the obtained p(AA-BIS) nanogel were evaluated. The polymerization in an aqueous environment resulted in a very big swelling/shrinking coefficient (of approx. 4000) in response to pH and exhibited an unusually high negative zeta potential (of approx. -130 mV). These properties make the nanogel a very interesting sorbent and a construction material.

12.
Int J Pharm ; 569: 118589, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31386880

RESUMO

Polymer microcapsules offer a possibility of storing increased amounts of drugs. Appropriate design and composition of the microcapsules allow tuning of the drug-release process. In this paper, we report on synthesis of hydrogel microcapsules sensitive to temperature and pH and degradable by glutathione and hydrogen peroxide. Microcapsules were based on thermo-responsive poly(N-isopropylacrylamide) and degradable cystine crosslinker, and were synthesized by applying precipitation polymerization. Such way of polymerization was appropriately modified to limit the crosslinking in the microcapsule center. This led to a possibility of washing out the pNIPA core at room temperature and the formation of a capsule. Microcapsules revealed rather high drug-loading capacity of ca. 17%. The degradation of the microcapsules by the reducing agent (GSH) and the oxidizing agent (H2O2) was confirmed by using the DLS, UV-Vis, SEM and TEM techniques. Depending on pH and concentration of the reducing/oxidizing agents a fast or slow degradation of the microcapsules and a burst or long-term release of doxorubicin (DOX) were observed. The DOX loaded microcapsules appeared to be cytotoxic against A2780 cancer cells similarly to DOX alone, while unloaded microcapsules did not inhibit proliferation of the cells.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Hidrogéis/administração & dosagem , Antineoplásicos/química , Cápsulas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Doxorrubicina/química , Liberação Controlada de Fármacos , Glutationa/farmacologia , Humanos , Hidrogéis/química , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Temperatura
13.
ACS Appl Mater Interfaces ; 11(12): 12114-12120, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30816688

RESUMO

Negatively charged, pH-sensitive, very thin gel layers with accumulated hexaammineruthenium (II)/(III) were deposited on conducting surfaces. The gel was synthesized by applying an electrochemically induced free-radical polymerization method. This method allowed covering the electrode surface with an uniform and compact layer. The modified electrodes exhibited excellent current switch on/off behavior in response to changes in pH. However, the main goal of this study was to achieve the control of the layer thickness by changing the oxidation state of hexaammineruthenium. The layers could be reversibly swollen/shrinked by applying appropriate potentials.

14.
Chem Sci ; 10(41): 9542-9547, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055325

RESUMO

Selective extraction of sulfates in the form of alkali metal salts using charge-neutral molecular receptors is one of the holy grails of supramolecular chemistry. Herein we describe, for the first time, a squaramide-based ion pair receptor equipped with a crown ether site that is able to extract potassium sulfate from the aqueous to the organic phase (an analogous monotopic anion receptor lacking the crown ether unit lacks this ability). 1H NMR, UV-vis, DOSY-NMR, DLS, and MS experiments and the solid-state single crystal structure provided evidence of the formation of a supramolecular core-shell like assembly upon interaction of the receptor with potassium sulfate. The presence of monovalent potassium salts, in contrast, promoted the formation of simple 1 : 1 complexes. Unlike the 4 : 1 assembly, the 1 : 1 complexes are poorly soluble in organic media. This feature was utilized to overcome the Hofmeister bias and allow for selective extraction of extremely hydrophilic sulfates over lipophilic nitrate anions, which was unambiguously proved by quantitative AES and ion chromatography measurements. A simple modification of the receptor structure led to a "naked eye" optical sensor able to selectively detect sulfates under both SLE and LLE conditions.

15.
Inorg Chem ; 57(20): 12941-12952, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30272445

RESUMO

We synthesized an ion pair receptor 1 consisting of a crown ether cation binding site and a squaramide anion binding domain and compared its binding properties to those of its analogous urea counterpart 2. We studied their salt binding properties using spectrophotometric and spectroscopic measurements in an acetonitrile solution and in acetonitrile/water mixtures. Apart from carboxylate anions, all of the anions tested were found to associate with receptor 1 and 2 more strongly in the presence of sodium cations. A homotopic anion receptor 3, lacking a crown ether unit, was unable to bind sodium salt more strongly than tetrabutylammonium salts. Solution and solid-state X-ray measurements revealed strong sodium chloride coordination to receptor 1, which is able to bind this salt even in the presence of 10% water. In contrast to the urea-based ion pair receptor 2 or anion receptor 3, ditopic receptor 1 is capable of extracting sodium chloride from aqueous media to the organic phase, as was evidenced unambiguously by 1H nuclear magnetic resonance, mass spectrometry, and atomic absorption spectroscopy analyses.

16.
Int J Pharm ; 523(1): 336-342, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28323099

RESUMO

Substantially improved hydrogel particles based on poly(N-isopropylacrylamide) (pNIPA) have been obtained. First, as a result of replacing commercially available N,N'-bis(acryloyl)cystamine (BAC), the crosslinker, with acryloyl derivative of cystine containing a carboxylic group (BISS), the hydrogel particles acquired improved stability vs. ionic strength and allowed further chemical modification of the chains, including the attachment of drug molecules. Next, a redox-initiated aqueous precipitation polymerization via the semi-batch method was used. This led to substantially increased BISS content and diminished size of the nanoparticles that made them suitable to an endocytic process. In addition, the obtained nanogels revealed high loading capacity of anticancer drug vs. dry gel (circa 16%) and they exhibited much better stability and enhanced drug release under the typical conditions existing in cancer cells. Size of obtained nanogels was investigated by dynamic light scattering (DLS). It appeared that nanoparticle size was in the range from ca. 40 to 200nm. In 0.01M solution of glutathione (GSH) the -S-S- bonds were reduced and the nanogel particles were degraded. This could be seen in obtained SEM and TEM micrographs. The cytotoxicity investigation against the HeLa cells showed that DOX loaded nanogels were more cytotoxic (IC50=0.51µM) than free DOX (IC50=0.83µM), while unloaded nanogels did not inhibit proliferation of the cells. It was also found that the nanogels loaded with DOX reached a high intracellular concentration in HeLa cells just after 2h while free DOX needed 6h for that.


Assuntos
Reagentes de Ligações Cruzadas , Cistina , Portadores de Fármacos , Hidrogéis , Nanopartículas , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/administração & dosagem , Reagentes de Ligações Cruzadas/química , Cistina/administração & dosagem , Cistina/análogos & derivados , Cistina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Nanopartículas/administração & dosagem , Nanopartículas/química
17.
J Phys Chem B ; 120(35): 9540-7, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27518807

RESUMO

For the examination of hydrogel structure, thin layers of thermoresponsive gels based on poly(N-isopropylacrylamide) (pNIPA) and copolymer poly(N-isopropylacrylamide-co-sodium acrylate) (p(NIPA-co-AS)) were successfully anchored to microelectrode and regular electrode surfaces using the electrochemically induced free radical polymerization. The obtained layers were stable and covered the entire surface of the electrodes. Electroactive probes 1,1'-ferrocenedimethanol (Fc(CH2OH)2) and synthesized derivatives of ferrocene modified with polyethylene glycol units (Fc-PEGn) of various length (n = 4, 9, 75, and 135) were employed for studying the volume phase transition of the thin hydrogel layers and for the determination of their structural parameters. The quantitative information on the structural parameters of the hydrogel layers was derived from the obstruction model for diffusion using the voltammetrically determined diffusion coefficients for the model redox probe Fc(CH2OH)2. An approach to the determination of the effective radii of the gel openings (channels) for pNIPA and p(NIPA-co-AS) microlayers was developed. The obtained results were matched with the experimental results and allowed derivation of quantitative conclusions. The voltammograms obtained with modified electrodes in solutions containing Fc-PEG4, Fc-PEG9, and Fc-PEG75 were well defined and of appropriate height. However, the voltammograms recorded for Fc-PEG135, the hydrodynamic radius of which exceeded the size of the gel channels, were at the baseline level.

18.
Analyst ; 141(20): 5815-5821, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27508280

RESUMO

A simple biosensing platform which involves the application of thermoresponsive hydrogels (p(NIPA-co-AA)) for detection of target DNA sequences is presented. For this aim the hydrogel based on N-isopropylacrylamide grafted with carboxyl groups was modified with H2N-ssDNA via the amide bond. The detection of target DNA sequences was achieved successfully by monitoring the volume phase transition temperature (VPTT). It was found that the dependence between the VPTT and the concentration of the target complementary DNA is linear in the concentration range from 10-12 to 10-6 M. The proposed DNA detection method is characterized by high sensitivity and good reproducibility. The detection limit obtained (∼1 pM) is a substantial improvement over DNA biosensor labelling with tags, because the detection is based on a physical parameter (VPTT). Circular dichroism (CD) and inductively coupled plasma mass spectrometry with laser ablation (LA-ICP-MS) proved that the hybridization process took place in the hydrogel matrix without any restrictions.


Assuntos
DNA/química , Hidrogéis/química , Temperatura de Transição , Transição de Fase , Reprodutibilidade dos Testes
19.
Inorg Chem ; 55(7): 3616-23, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26981921

RESUMO

We synthesized simple ion pair receptors consisting of a crown ether cation binding site and an anthraquinone-supported thiourea anion binding domain and studied their anion-, cation-, and salt-binding properties using spectroscopic, spectrophotometric, and electrochemical measurements in acetonitrile solution. Apart from carboxylate anions, which cause deprotonation, all the anions tested were found to associate with receptor 1 more strongly in the presence of sodium cations, whereas in the presence of potassium or ammonium cation the anion binding strength was greatly diminished. A homotopic anion receptor 3, lacking a crown ether unit, was unable to bind sodium salt more strongly than tetrabutylammonium salts. Solution and solid-state X-ray measurements revealed that strong sodium coordination with the cation-binding domain is responsible for the salt-binding enhancement. Electrochemical measurements showed that the addition of anions to the receptor 1 pretreated with sodium cations resulted in greater changes in reduction potentials compared to the addition of anions to receptor 1 in the absence of Na(+).

20.
Bioelectrochemistry ; 109: 1-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26764570

RESUMO

Composites consisting of ss- and ds-DNA strands and polyacrylamide (PAM) hydrogel have been synthesized. DNA was entrapped non-covalently. The obtained DNA biomaterial exhibited a strong increase in guanine and adenine anodic currents when temperature reached the physiological level. This increase was related to the unique oligonucleotide structural changes in the composite. The structural alterations in the PAM lattices were employed for the release of the drug accumulated in the composite. Doxorubicin (Dox) was selected as the drug; it was accumulated by intercalation to dsDNA and was slowly released from the dsDNA/PAM system by using a minor temperature increase (up to 40÷45 °C) as it is routinely done in hyperthermia. The applied release temperature was either constant or oscillating. The binding strength, the rate of Dox release and the properties of the composite were examined using voltammetry, SEM and ICP-MS.


Assuntos
Resinas Acrílicas/química , Antibióticos Antineoplásicos/administração & dosagem , DNA/química , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Hidrogéis/química , Materiais Biocompatíveis/química , Guanina/química , Substâncias Intercalantes/administração & dosagem , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...